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INTRODUCTION 

Analysis of the stability "and performance of control systems in which a 
human controller is an active element has been hampered by the lack of an 
adequate mathematical model of the human control function. The recognized 
pioneer in the problem of determining models of human controllers was 
Tustin (ref. l), who, in 1947, reported on compensatory tracking experiments 
and used the data from these experiments to formulate a model of a human 
controller. Many investigators since Tustin have analyzed data from similar 
experiments to formulate human control-response models. Because the 
human controller or  pilot flying an airplane adapts or  changes his technique 
as the dynamics of the plant or airplane changes, many experiments are 
necessary. In the compensatory tracking experiment (see fig. 1) the pilot 
is asked to minimize the error, e, displayed to him by an oscilloscope, 
television screen, or meter by manipulating a controller. The controller 
deflection, c y  is sent to an analog computer which computes the response 
of the controlled element and adds to it the input disturbance function, i, 
forming an error which, in turn, is sent to the display. The signals are 
either processed during the experiment or recordings are made of the 
signals and later processed to obtain the model of the pilot (ref. 2). Similar 
experiments have been performed in flight in which the pilot maneuvers the 
airplane (refs. 3 and 4). 

Data resulting from such experiments have been analyzed, and linear 
pilot models have been obtained (refs. 2 to 4) for a limited set of controlled- 
element dynamics. The methods used to construct the pilot models have 
been almost exclusively in the frequency domain (ref. 2). Recently, the 
time-domain analysis (ref. 5 )  has been applied to the problem of modeling 
pilots. Almost all the analysis of human control response that has been 
performed, however, has been in terms of linear models because human 
control response is often almost linear and the linear analysis is simpler. 
Figure 2 shows a block diagram of such a model. The part of the human 
controller's response that deviates from a linear, constant-coefficient model 
is represented by a noise signal, r, added to the output of the linear model 
in the manner shown. 

Most of the small amount of nonlinear analysis that has been performed 
has been ad hoc in the sense that specific nonlinearities have been assumed 
and their characteristics determined by manual adjustment (ref. 6) or by 



least squares (ref. 7). The time-domain analysis of Balakrishnan (ref. 8) 
offers a means by which nonlinear systems can be analyzed and modeled 
without having to assume specific nonlinearities. The only assumptions 
necessary are those that pertain to a Volterra integral series expansion. 
This generality is particularly important when little is known about the system 
being modeled, as with human controllers. 
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The initial results of the nonlinear time-domain analysis were reported 
in reference 5. Since that time, additional analyses have been made. 
paper presents some of the results of these subsequent analyses and discusses 
the method of selecting the maximum memory time and the order of the non- 
linear model. In addition, some results of orthogonal expansion of the 
weighting functions for reasons of data compression and reduction computation 
are  presented and discussed. 

This 

LINEAR TINIE-DOMAIN METHOD 

Let us now consider a linear analysis in the time domain in which the 
output of a linear pilot model is expressed in the form (see ref. 8) 

c(t) = f M h  (T)e(t - T ) &  + r(t) 
P 0 

Because the time histories c(t) and e(t) must be sampled for analysis, it 
is more appropriate to write 

M 
c(n) = 1 hp(m)e(n - m + 1) + r(n) 

m=l 

or in matrix form 

where 

E =  

c = E h  +; 
- - P  
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The sampled impulse response of the pilot model, h (m), can be obtained by 
using the least-squares formulation P 

A h = [ETE] - lE T 2 
-P 

Inherent in the time-domain representation of the pilot model is the 
assumption that the output at any one time is a function of only a finite time 
of the history of the error. This maximum memory is denoted by M in 
the expression of the pilot model output. Figure 3 shows a typical result of 
such an analysis. It can be seen that the model impulse response first peaks 
at about 0 . 3  second, then oscillates as it subsides to zero. The oscillation 
indicated in the pilot's impulse response function is typical and is thought to 
be due to the dynamics of the combination of the control stick and the pilot's 
arm. 

The time-domain results can be transformed to the frequency domain for 
comparison with the frequency-domain results through the use of the Fourier 
transform so that 

\ Figure 4 shows such a comparison in terms of amplitude ratio and phase angle. 
Although there is fair agreement between the time-domain and frequency- 
domain results, considerably less variance is evident in the time-domain 
results, as is indicated by the smaller range of values determined from three 
independent sets of data. The variance in the frequency-domain results is 
particularly severe at the lower frequencies where the error,  which is the 
input to the pilot, is kept very small. For frequency-domain analysis, an 
input disturbance must be used which is rrlargetl compared with the remnant or 
noise of the pilot. If this is not true, the measured pilot model becomes the 
inverse of the transfer function of the plant o r  airplane. This does not apply 
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in the time-domain analysis, however, because only causal or  realizable models 
result from the requirement that the model response follow the input. Wingrove 
and Edwards (ref. 9) of the Ames Research Center have in fact analyzed, using 
the time-domain method, flight data for which no disturbance input was present 
except that due to the pilot's remnant. If such a procedure proves to be 
generally applicable, special tracking experiments will not always be required 
and it will be possible to use data heretofore unanalyzed to determine pilot 
models by means of the time-domain method of analysis. Still another 
advantage of analysis in the time domain is the capability of constructing non- 
linear pilot models, 

NONLINEAR TIME-DOMAIN METHOD 

Nonlinear behavior on the part of the pilot accounts for at least part of 
the remnant of a linear pilot model. It is, therefore, of interest to investi- 
gate nonlinear pilot models. The formulation of a nonlinear time-domain 
pilot model can be expressed by using a Volterra integral series: 

(linear) 

(quadratic) 

(cubic) 

or in the discrete case 

M 

C(n) = 2 hl(m)e(n - m + 1) 
m=l 

(linear) 

M M  

m =1 m -1 1 2- 

+ 2 h2(ml,m2)e(n - m1 + l)e(n - m2 + 1) 

t 

a- 

(quadratic) 
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.. 

(cubic) 

+ . . . . . . . . . . . . . + r(n) 
(higher order) 

As for the linear example, these expressions can be easily put in terms of 
matrices. 

If again 

but h is expanded to include the elements of the higher order weighting 
functions so that 

h 



and if E is expanded in a similar way so  that 
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we can again wri te  
h 

c = E h  + r  - - -  
and 

It is difficult to present the results of such an analysis in a meaningful 
form, but it is instructive to look at an example step response. Figure 5 
shows (1) the response of the linear portion of the model and (2) the total 
response of the nonlinear model. A step input was used with an amplitude 
equal to twice the root-mean-square of the error or input to the pilot. The 
responses have been normalized for comparison. As the amplitude of the 
input is reduced, the response will approach that shown for only the linear 
portion. The only significant difference is the greater overshoot for larger 

. .. 

6 



inputs and a slight increase in gain (evidenced by the larger steady-state 
response) of the larger input. 

SELECTION OF MEMORY TIME AND ORDER 

One method of assessing the worth of a model is to consider the f i t  error 
o r  the mean square of the difference between the measured and the calculated 
response. In figure 6 the fit error, which has been normalized by dividing 
by the near square of the total response, is plotted against both the maximum 
memory time on the left and the order of the nonlinearity of the model on the 
right. It is apparent that the fit error continues to decrease as either the 
memory time or the order is increased. It is of course not surprising that 
the f i t  error is reduced, since both increased memory time and increased 
order result in more degrees of freedom for the model. If as many elements 
in the model are allowed as there are data points, the f i t  error would be zero. 

Another consideration is the variance or lack of certainty with which the 
weighting function elements can be determined. In figure 7 a lower bound of 
the average variance of the weighting elements is plotted against the same 
quantities, the maximum memory time and the order of the model. 
estimates of the variance are based on the Cramer-Rao inequality in the same 
manner as was done by Astrom in reference 10. The values have been 
arbitrarily normalized. It is evident that the uncertainty of the weighting 
function increases as the memory time or order increases. Consequently, 
the selection of memory time and order should consider both the f i t  error 
and the variance. 

The 

Since we will use a model to predict the pilot's response for an unknown 
input, let us next consider the fit error,  not for the same data used to deter- 
mine the model but for an independent or  "new" set of data. 
that the f i t  error now increases with increased order. On the basis of this 
information, one would conclude that a linear model with a maximum memory 
exceeding 5 seconds should be used. This result should serve as a warning 
against believing that a reduction of the fit error over the same data to define 
the model is necessarily an improvement. 

Figure 8 shows 

The large difference in the f i t  error that results from using the same 
and new data indicates that either more data or a longer run length is needed. 
An example of the effect of run length on the difference of the fit error is 
presented in figure 9. It can be shown that the expected value of the f i t  error 
for an infinite amount of data is approximately the average of the values for 
the same and new data. The run length of 1 minute that was used in figures 6,  
7 ,  and 8 is inadequate to accurately determine the expected value of the fit 
error, Consequently, the run length was increased to 4 minutes. Figure 10 
shows the final fit-error results. 
error for values of memory time in excess of about 3.25 seconds for a linear 
model. The reduction in fit error that results from using a third-order non- 
linear model as compared to a linear model is 4 percent out of 36 percent. 
It is not expected that this reduction would warrant the added complexity of a 

There is no discernible decrease in f i t  
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nonlinear model in most applications. Although it cannot be said with certainty 
that appreciable further reductions in the fit error cannot be made by using even 
higher-order nonlinear models, the indication is that higher order models are 
not warranted. This would indicate the bulk of the remnant to be stochastic 
rather than deterministic, a result consistent with results reported in reference 5. 

DATA COMPREXSION 

One problem that faces the analyst in a comprehensive study is the difficulty of 
summarizing the results of perhaps a hundred cases each having as many as 
55 weighting elements. One approach to the problem for linear models has 
been to use 10 terms of a LeGuerre polynomial expansion (refs. 11 and 12). 
This represents a reduction from about 20 quantities (gain and phase) needed 
for characterization in the frequency domain to 10 coefficients for the LeGuerre 
polynomial representation of the impulse response function. One wonders, 
however, if there are not better functions to be used, especially for nonlinear 
models. A method suggested by Dr. A. V. Balakrishnan, of the University 
of California at Los Angeles, and motivated by the spectral representation of 
the information matrix appears to answer this question. A large, representative 
collection of weighting functions is used to form a summation of outer products 

The Eigen values and the corresponding Eigen functions of the matrix are then 
determined. The Eigen vectors which correspond to the principal Eigen values 
can then be used as functions for expanding the weighting functions. This 
method was applied to a collection of linear weighting functions with satis- 
factory results. Only 3 or 4 of the Eigen vectors were necessary to characterize 
38 weighting functions, each with 13 elements. The principal Eigen vector is 
plotted in figure 11 and appears to be a typical impulse response, as would be 
expected. Only 3 or 4 values are now needed to characterize the model which 
in the frequency domain required 20. The potential savings in data and in 
reduced computation for nonlinear models is even greater since the modeling 
problem reduces to determining a few to several coefficients as opposed to 
determining a much larger number of weighting elements. 

CONCLUDING REMARKS 

Analysis in the time domain is more advantageous than analysis in the frequency 
domain because (1) fewer values are needed for a characterization (this is 
especially true if the proposed method expansion for the weighting function is 
used) and (2) greater accuracy is achieved, especially when the input disturb- 
ance is not large compared with the remnant. 
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The f i t  error over the data used to determine the model decreases with 
increased memory time and order of nonlinearity. This result can be mis- 
leading, however, as the average variance of the weighting terms increases. 
The fi t  error over new or independent data should be used to assess which 
memory time and what order of nonlinearity should be used. 

matrix of the outer products of a large, representative sample of weighting 
functions have proved to provide an efficient orthogonal expansion. The 
determination of the coefficients of these functions, as opposed to that of a 
much larger number of weighting-function elements, promises to offer not 
only a means of summarizing large sets of results but also of reducing the 
computation necessary. 

Eigen vectors that correspond to the principal Eigen values of a summation 

Although the results from applying nonlinear time-domain analysis to the 
problem of modeling the human controller have been useful, any advantage of 
a nonlinear model over a linear model or the human controller performing a 
compensatory tracking task appears to be small. This result would not have 
been known, however, if nonlinear models of the human controller had not 
been made. 
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SYlMBOLS 

'a. 

e 

C 

E 

e 

h 

hi 

h 
P 

i 

M 

m 

N 

n 

0 

r 

S 

S 

TM 
t 

T 

AT 

w 

pilot output (control deflection), inches 

error matrix 

error, radians 

Fourier transform 

time interval, seconds 

sample of impulse response of pilot 

impulse response of pilot inchedradian or inches/degree 

input (external disturbance function), radians 

m 

I M  maximum value of m, M = - AT 

index for the argument of h 

maximum value of n 

index for time 

P 

linear output of pilot model (control deflection), inches 

remnant signal of pilot model (control deflection), inches 

matrix 

Laplace variable 

maximum memory time of the pilot model, seconds 

time seconds 

transfer function of controlled element 

controlled-element transfer function, radians/inch 

pilot describing function, inches/radian 

argument of h seconds 

incremental value of T , seconds 

frequency, radians/second 

P' 
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A estimate 

I I  absolute value 

L phase angle 

Matrix notation: 

(XI, x column matrix 

[XI rectangular or square matrix 

XT transpose 

X-I inverse 

Numbers used as subscripts denote the pertinent term or terms of the 
Volterra integral series or summation. 
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A COMPENSATORY TRACKING TASK 
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COMPARISON OF STEP RESPONSES FOR A LINEAR AND 
A NONLINEAR PILOT MODEL 
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AVERAGE VARIANCE OF WEIGHTING TERMS AS A 
FUNCTION QF MEMORY TIME AND ORDER 
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